MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 1,@

Devoir en temps limité n°3 - 3h

Calculatrices autorisées

On veillera a présenter tres clairement sa copie : il faut rédiger les réponses et encadrer les résultats. Pour le code, il
doit étre indenté, on ne commence pas une fonction en bas de page et on utilise de la couleur pour les commentaires.

Le code doit étre commenté des qu’il dépasse les 5 lignes.

Les fonctions en C et en Ocaml doivent avoir le type précisé. Il est donc recommandé d’utiliser des fonctions auxi-
liaires.

1 Questions de cours

1.

Rappeler les primitives qui caractérisent la structure de pile.
Les primitives sont créer une pile vide, dépiler I’élément le plus récent, empiler un élément, tester si la pile
est vide et détruire la pile.

. Rappeler une maniéres d’implémenter une file vues dans le cours. Quelques phrases d’explication (et pourquoi

pas un dessin) sont attendues.
On pouvait proposer d'implémenter une file dans un tableau circulaire avec deux indices ou avec deux piles
(on a vu encore d’autres méthodes en TD et TP).

. Comment implémenter un type permettant de représenter les arbres binaires en Ocaml ?

type 'a arbrebin = Vide|N of 'a arbrebin * 'a x 'a arbrebin;;

. Quelle est la formule récursive définissant la hauteur d’'un arbre binaire ?

Hauteur(Vide) = -1 Hauteur(N(g,x,d))=1+max(Hauteur(g),Hauteur(d))

Ecrire en Ocaml une fonction récursive qui calcule la somme des éléments d’une liste.
On consideére ici que la somme des éléments de la liste vide est 0. C’est une convention.
let rec somme 1 = match 1 with

[[1 ->0
|[t::q -> t+(somme q);;

. Donner sa signature (son type). int list -> int
. Montrer la terminaison de votre fonction.

La longueur de la liste / est un variant des appels récursifs. En effet c’est une quantité entiére et positive et
I’appel récursif est effectué sur ¢ la queue, dont la longueur est par définition la longueur de / moins 1.

. Montrer la correction de votre fonction.

On doit montrer la correction pour le cas de base et montrer que pour une entrée [donnée, si ’'appel sur g est
correct alors 'appel sur / aussi.

Cas de base : si [= [] on renvoie 0. On a dit que par convention c’était bien la somme de la liste vide.
Supposons que 'appel récursif sur g soit correct et renvoie la somme des éléments de g. Alors notre fonction
renvoie ¢ plus la somme des éléments de ¢, ce qui donne la somme des éléments de .

La fonction est donc correcte.

. Calculer la complexité de votre fonction en écrivant la formule de récurrence de sa complexité. On note C(n)

la complexité de lap fonction sur une liste de taille n.

OnaalorsC(0)=1etC(n) =1+C(n-1).

Cette suite est arithmétique. SOn expression générale est C(n) = 1+n. On en déduit que notre fonction a une
compleixté asymptotique linéaire.

2 Un peu de poissons

Par exemple pour n = 3, le seau de la pécheuse peut étre [| saumonl; faux_poisson;faux_poisson|]. Le seau contient
alors un saumon et c’est tout.

10.

Ecrire une fonction compte_poissons : poisson array -> int qui compte combien de vrais poissons la pécheuse
a capturé.
let compte_poissons seau =

let nb = ref 0 in
let n = Array.length seau in

while !'nb<n && seau.(!nb) <> faux_poisson do (*0n s'arréte quand on atteint la fin ou un faux poissonx)

nb:=!nb+1
done;
I'nb;;

MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 2,@

11. Ecrire une fonction compte_argent : poisson array -> int qui compte combien d’argent la pécheuse va gagner
avec son seau de poissons.

let compte_argent seau =
let res = ref 0 in
let n = compte_poissons seau in
for i=0 to n-1 do (*Additionner les valeurs des vrais poissonsx)
res:=!res+seau. (i).valeur
done;

12. Ecrire une fonction peut_porter : poisson array -> int -> bool qui prend en entrée le seau et x et renvoie vrai
st la pécheuse peut porter le seau et faux sinon.

let peut_porter seau x =
let poids = compte_poids seau in
if poids>x then false
else true;;

13. Ecrire une fonction insere : poisson list -> poisson -> poisson list qui prend en entrée la liste l triée selon
les valeurs croissantes et un poisson p et range le poisson p dans la liste | a sa place, c’est a dire en préservant
le tri par valeurs.

let rec insere 1 p = match 1 with
[[1 ->p
|t::q when t.valeur > p.valeur -> p::1
[t::q -> t::(insere p q);;

14. Compléter la fonction quoi_retirer : poisson array -> int -> string suivante qui prend en entrée le seau et
x et renvoie le nom du poisson retiré.

S’il n’est pas possible de ramener le poids du seau en dessous de x en retirant un seul poisson, on fera une
erreur.

let quoi_retirer seau x =
let nb_poissons = compte_poissons seau in
let poids_total = compte_poids seau in
let 1 = ref [] in (xliste des poissons qu'on pourrait retirerx)

for i = 0 to nb_poissons-1 do (*pour chaque poissonx)
if poids_total - seau.(i).poids <= x then l:=insere !1 seau. (i)
done;

(*Conclure sur quel poisson on va retirerx)
if !1=[] then failwith "il faudrait retirer plusieurs poissons"
else (List.hd !1l).nom;;

3 Un peu de chainage

15. Ecrire une fonction bool est_bord(casex c) qui détermine si la case c est sur un bord de la grille.

bool est_bord(casex c){
if (c->nord==NULL||c->sud==NULL||c->est==NULL||c->ouest==NULL){return true;}
return false;

}

16. Ecrire une fonction casex nouvelle_case(int v, casex n, casex o, casex s, casex e) qul crée une nouvelle
case dont la valeur est v et qui pointe vers les cases indiquées (n= voisine nord, etc...).

casex nouvelle_case(int v, casex n, casex 0, casex S, casex e){
casex res = malloc(sizeof(case));
res-> valeur = v;
res->nord = n;
res->sud = s;
res->ouest = o;
res->est=e;
return res;

MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 3,@

17. On suppose qu’on dispose du pointeur g de la Figure 3. Comment obtenir la valeur de la case (0,1) ? De la case
(1,2) 2 Du coin sud-est ?

Pour la case (0,1) : g->coinN0->est (a I’est de la case NO)

Pour la case (1,2) : g->coinNO->est->est->sud (il faut aller deux fois a I’est et une fois au sud, 'ordre n’est pas
important)

Pour le coin sud-est : g->coinN0->est->est->sud->sud->sud.

18. Ecrire une fonction int nb_colonnes(grillex g) qui calcule le nombre de colonnes de g. Indication : il faut
compter combien de fois on peut aller a Uest depuis la case NO.

int nb_colonnes(grillex g){
int res = 0
casex case_actuelle = g->coinNO;
while (case_actuelle!=NULL){
res+=1;
case_actuelle = case_actuelle->est;

}

return res;

}

19. Ecrire une fonction int nb_lignes(grillex g) qui calcule le nombre de lignes de g.
C’est pareil en allant vers le sud plutdot que lest.

20. Quelle est la complexité de la fonction précédente ?

La boucle while s’effectue autant de fois que le nombre de lignes. Dans la boucle while on ne fait que des
opérations élémentaires. La fonction est linéaire en le nombre de lignes.

21. Ecrire une fonction int valeur_case(grillex g, int i, int j) qui renvoie la valeur de la case (i, j). On utili-
sera assert pour faire une erreur si la case n’existe pas.

Le principal piége dans cette question est qu’on utilise des boucles séparées : on se balade vers le sud 1 fois
puis vers l'est j fois.

int valeur_case(grillex g, int i, int j)
casex case_actuelle = g->coinNO;
for(int x=0; x<i; x+=1){

assert (case_actuelle!=NULL);
case_actuelle = case_actuelle->sud;
}
for(int y=0; y<j; y+=1){
assert (case_actuelle!=NULL);
case_actuelle = case_actuelle->est;
}
assert (case_actuelle!=NULL);
return case_actuelle->valeur;

}

22. Quelle est la complexité de la fonction précédente en fonction de i et j?

On a une boucle qui fait i — 1 tours (avec que des opérations élémentaires) et une boucle qui fait j — 1 tours
(avec que des opérations élémentaires. La complexité finale est en O(i + j) = O(max(i, j)).

23. Ecrire une fonction int somme_grille(grillex g) qui effectue la somme des éléments de la grille.

On parcourt ligne par ligne en allant vers ’est autant que possible. Quand on arrive en bout de ligne, on va
une fois au sud et autant de fois que possible a 'ouest et on recommence en sommant les cases au fur et a
mesure.

int somme_grille(grillex g){
int res=0;
casex case_actuelle = g->coinNO;

int nb_lignes = nb_lignes(g);

int nb_colonnes = nb_colonnes(g);
//Parcours des lignes

for(int i=0;i<nb_lignes;i+=1){

//Aller vers l'est en sommant

for(int j=0;j<nb_colonnes;j+=1){
res+=case_actuelle.valeur;
case_actuelle=case_actuelle->est;

}

//Fin de la ligne, retourner en (i,0) en allant a l'ouest sans sommer

MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 4,@

for(int j=0;j<nb_colonnes;j+=1){
case_actuelle=case_actuelle->ouest;

}
//Aller une fois au sud pour la ligne suivante
case_actuelle = case_actuelle->sud;

}

24. Quelle est la complexité de la fonction précédente ?

On a deux boucles for imbriquées qui effectuent des opérations élémentaires. En notant n le nombre de ligne
set m le nombre de colonnes, la complexité est en O(n X m).

4 Tri avec des files

1. Réseau de files

25. Dans cette question on considére k = 2. Dessiner l’état final du réseau si on commence avec la liste L = [3;1;0;2]
et qu’on effectue les déplacements In(1),In(1),In(2), Out(2),Out(1).

=
3 v

<%

0:1

F2

26. Ecrire une fonction cree_reseau_vide : int -> int Queue.t array qui prend en entrée k et crée un réseau qui
pour le moment ne contient aucun élément.

Attention, les files crées dans le Array.make ci-dessous ne sont aps indépendantes, c’est pourquoi on les rem-
place (méme probleme qu’avec les matrices)

let cree_reseau_vide () =
let reseau = Array.make (k+2) (Queue.make ()) in
for i = 0 to n-1 do
reseau. (i)<-Queue. make ()
done;
reseau; ;

27. Ecrire une fonction charge_liste : int list -> int Queue.t array -> unit qui prend en entrée une liste d’élé-
ments et un réseau et met les éléments dans la file donnée.

let rec charge_liste 1 reseau = match 1 with
[[1 -> ()

[t::q -> Queue.push t reseau.(0); charge_liste q;;

28. Ecrire une fonction execute_sequence : deplacement list -> int Queue.t array -> unit qui prend en entrée
une liste de déplacements et un réseau et effectue les déplacements demandés (In ou Out)

let rec execute_sequence 1 reseau = match 1 with
[[1 -> ()
|[In(i)::q -> Queue.push (Queue.pop reseau.(0)) reseau.(i); execute_sequence q
[Out(i)::q -> let kplus2 = Array.length reseau in Queue.push (Queue.pop reseau.(i)) reseau.(kplus2-1);
execute_sequence q

2. Tride listes

29. En utilisant k = 1 files, donner un scénario qui permet de trier la liste [1,2]. In(1),In(1),Out(1), Out(1)
30. En utilisant k = 3 files, donner un scénario qui permet de trier la liste [3;5,2,7;1,8,9].

In(1),In(1),In(2),In(1),In(3), Out(3),Out(2),Out(1),0ut(1),0ut(1),In(1),In(1),Out(1), Out(1).
31. Combien de déplacements contient un scénario de tri ? Justifier.

Un scénario de tri contient toujours 2n déplacements (on rappelle que n = |L|). En effet chaque élément subi
un seul déplacement d’entrée et un seul déplacement de sortie.

MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 51@

32.

33.

34.

35.

Justifier que pour tout scénario T, on peut construire un scénario T’ qui utilise les mémes déplacements mais
ou tous les In sont faits avant les Out.

Si on a dans le scénario un Out (i) puis un In(y) alors :

m Sii # j échanger les deux déplacements ne change rien : ce qui se passe dans la file i ne peut pas
affecter ce qui se passe dans la file j et réciproquement.

m Sii = j, alors étudions ce qui se passe si on échange les deux mouvement. On note e I'élément en

téte de la file F; juste avant 'exécution de Out(i) dans le scénario original. On note e’ 'élément en
téte de la file donnée juste avant 'exécution de In (i) dans le scénario original. On remarque que e’
est également en téte de donnée juste avant I'exécution de Out (i) dans le scénario original
Scénario original : on défile e et on met e’ dans F;.
Scénario modifié : on met e’ dans F; et c’est toujours e qui est défilé car la file est une structure FIFO.
Conclusion : inverser deux évenement Out et In consécutifs ne change rien. En répétant ce échanges
qui ne changent rien au comportement du scénario suffisament de fois, on arrive & une situation out
le scénario fait tous les In avant les Out.

Montrez qu’a chaque étape d’'un scénario de tri, chacune des files intermédiaires (les F;) est soit vide, soit triée
dans lordre croissant.

Pour que le scénario se termine, chaque file sauf la file résultat doit étre vide. Donc tout élément qui est &
un moment dans une des files intermédiaires est & un autre moment mis dans résultat.

Supposons que durant 'algorithme il existe un instant ou une certaine file F; n’est pas triée dans 'ordre
croissant, c’est a dire qu’elle contient deux éléments e et e’ tels que e a été ajouté avant e’ dans la file mais
e’ < e. Alors ces deux élements vont étre mis dans résultat et pour respecter la propriété FIFO, e apparaitra
avant e’. Donc la file résultat ne sera pas triée a la fin, ce qui est absurde, le scénario proposé est incorrect.

Déduisez-en que, dans un scénario de tri, deux éléments s; et s tels que i < j mais s; > sj ne peuvent pas aller
dans la méme file intermédiaire. Montrez que si L contient une sous-séquence décroissante de longueur m, avec
m € N*, il faut au moins m files en paralléle pour trier L.

Si on met deux éléments s; et s; tels que i < j mais s; > s; dans la méme file intermédiaire, celle-ci n’est
pas croissante. De plus s; ne peut étre lo’bjet d'un déplacement de sortie avec s;, sinon résultat ne serait pas
triée. D’apres la question précédente, aucun scénario de tri ne peut fonctionner ainsi.

Montrons maintenant par récurrence sur m que si L contient une sous-séquence décroissante de longueur m,
avec m € N*, il faut au moins m files en paralléle pour trier L, peut importe le nombre total & de files.

On initialise pour m = 2. On a donc deux éléments s; et s; tels que i < j mais s; > s;. Comme on vient de le
dire, ces deux éléments ne peuvent pas aller dans la méme file. Il nous faut donc au moins 2 files pour trier
L.

Supposons la propriété vraie pour m < n. Soit L contenant une sous-séquence décroissante de longueur m+1:
Siyy---Si, > Smtl-

Comme trier plus d’éléments ne peut qu’utiliser des files en plus et jamais des files en moins, on va se ramener
au cas ou L ne contient que s;,, ...S;, , Sm+1.

si; va a un moment étre ajouté a une file, sans perte de généralité on peut considérer que c’est F;. Il ne peut
pas en ressortir avant que tous les autres éléments de la sous-séquence aient été mis dans résultat et aucun
autre élément de la sous-séquence ne peut étre mis dans F; d’apres la question précédente.

On va donc faire comme si F; n’existait plus.

Ramenons-nous au cas ot on a k — 1 files (on ignore F}) et la liste a trier est [s;,,...S;, , Sm+1]. Il s’agit d’'une
liste contenant une sous-séquence décroissante de taille m, donc par hypothése de récurrence il faut au moins
m files pour la trier.

Finalement il nous faut au moins m + 1 files pour trier L.

En utilisant les propriétés déterminées dans les questions précédentes, donner un algorithme en pseudo-code
permettant de trier L avec le réseau.

L’idée poussée par les observations précédentes est qu’il faut faire attention aux sous-séquences décroissantes
et maintenir les files intermédiaires dans un ordre croissant.

On va donc essayer de toujours utiliser le moins de files possibles pour avoir des files disponibles pour y mettre
des éléments de sous-séquences décroissantes quand on les rencontre.

Pour savoir quels éléments peuvent étre mis sans danger dans quelle file, on peut garder un tableau indiquant
le dernier élément enfilé dans chaque file intermédiaire. Les files intermédiaires devant toujours rester crois-
santes, cela nous suffit.

Enfin, grace a la question 32 on sait qu’on peut d’abord faire tous les In puis tous les Out, ce qui évite des
vérifications.

Pseudo code :

Créer le réseau.
Charger la liste dans donnée.

MP2I - Lycée Carnot - 2025/2026 Informatique - DS3 6@

Créer un tableau der rempli de -1 de taille k.
Pour i allant de 1 a n :
Défiler un élément e de donnée
Regarder s'il existe une file intermédiaire non vide i telle que e est plus grand que der[i].
Si ¢ca n'existe pas , mettre e dans la premiere file vide
Mettre a jour der
Pour i allant de 1 a n :
Trouver la plus petite téte parmi toutes les files intermédiaires
Défiler et enfiler dans résultat

	Questions de cours
	Un peu de poissons
	Un peu de chainage
	Tri avec des files
	Réseau de files
	Tri de listes

